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Semi-Lagrangian advection on a spherical geodesic grid
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SUMMARY

A simple and efficient numerical method for solving the advection equation on the spherical surface
is presented. To overcome the well-known ‘pole problem’ related to the polar singularity of spherical
coordinates, the space discretization is performed on a geodesic grid derived by a uniform triangulation
of the sphere; the time discretization uses a semi-Lagrangian approach. These two choices, efficiently
combined in a substepping procedure, allow us to easily determine the departure points of the characteristic
lines, avoiding any computationally expensive tree-search. Moreover, suitable interpolation procedures on
such geodesic grid are presented and compared. The performance of the method in terms of accuracy and
efficiency is assessed on two standard test cases: solid-body rotation and a deformation flow. Copyright
q 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Spherical geodesic grids have been used in some early meteorological works [1–3]. However,
these methods have recently been rediscovered ([4–6] among the others) as more and more
researchers have begun to move away from spectral methods towards finite volumes, finite elements
and finite difference methods for spherical domains. The global numerical weather prediction
model (GME) developed by the German Weather Service [7] uses an icosahedral–hexagonal grid
which allows a nearly uniform resolution with less than 20% variation of mesh size over the
globe.

These grids are based on the refinements of uniform triangulations of the sphere, in an attempt
of better representing the Earth atmosphere. Indeed, conventional models with latitude–longitude
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grids give horizontal resolution that varies systematically and anisotropically with latitude; on
the contrary, geodesic grids can offer quasi-uniform resolution, overcoming the ‘pole problem’;
however, their implementation often suffers from high computational effort and expensive integra-
tion schemes which have to be generated automatically as in [7].

The treatment of advection represents a fundamental part in every numerical method for
atmospheric circulation: since stability, accuracy and efficiency of the overall models depend
on each of the approximations we made, the introduction of more accurate numerical schemes
for the advective terms can improve the performance of the model. Moreover, the complexity
of the full circulation models makes that all numerical approximations made there are first fully
analysed on simpler test equations both from the theoretical and computational point of view. In
the last years, semi-Lagrangian techniques became very popular (see [8] for a review), since they
guarantee unconditional stability, and then permit the use of large time steps, not constrained by the
Courant–Friedrichs–Lewy (CFL) condition. However, in the general literature, semi-Lagrangian
techniques approximate the trajectories with straight lines in the longitude–latitude plane, which
would be a poor approximation, especially near the poles. Amato and Carfora [9] have already
developed a semi-Lagrangian method for the numerical solution of the advection equation on a
uniform longitude–latitude grid, with a substepping procedure which permits to accurately re-
produce the characteristic lines. The idea of the method is based on a work by Casulli [10]
and has been modified to adapt to spherical geometry. In this procedure, the characteristic sys-
tem is solved with a first-order numerical scheme (Euler method) or also with a Runge–Kutta
method. In both cases, with a single-step procedure or with the proposed substepping procedure,
the value of the advected field at the departure point of the characteristic lines is then interpo-
lated.

As an alternative to the standard iterative interpolating procedure, which dates back to
Ritchie [11], McGregor [12] introduced a departure point calculation procedure that does not
involve interpolation. His scheme is based on a truncated Taylor series expansion for the generic
departure point about the corresponding arrival point along the characteristic line and requires
the evaluation of the partial derivatives of the advected field up to the chosen order of
approximation.

The present paper also addresses to the simplified problem of pure advection. It represents a
departure from previously published works on solving advection and shallow water equations on the
sphere [9, 13, 14] since it proposes the use of an icosahedral grid. Even if these grids have gained a
considerable interest in the meteorological community, the related interpolation procedures are still
little studied. For this reason, the author developed ‘ad hoc’ interpolation procedures and compared
them with several published interpolation schemes belonging to three groups: linear schemes, such
as the one considered in [7], distance-based schemes and cubic interpolators adapted to spherical
triangles. Implementation and cost-efficiency details of these schemes for a simple test case have
been reported in details in a recently performed study [15], whose conclusions lead us to prefer
radial basis functions (RBFs) and cubic interpolators of Lagrange type, that yield very accurate
results at a reasonable cost.

These schemes are there applied to a standard test problem [16] for advection on the sphere; for
such a problem, we also consider as a comparison the implementation of McGregor’s approach
on icosahedral grids as proposed by Giraldo [17].

Moreover, a second and more challenging test problem has been considered: an idealized vortex
problem in spherical geometry with an exact solution [18].
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SEMI-LAGRANGIAN ADVECTION ON A SPHERICAL GEODESIC GRID 129

THE NUMERICAL METHOD

Grid generation

The icosahedral–hexagonal grid, already introduced in meteorological modelling in the late 1960s
[1, 2], has been gaining increasing interest in recent years. The approach described here was
developed in a seminal paper by Baumgardner and Frederickson [19].

To generate the grid, a regular icosahedron is embedded into a sphere such that two of its 12
corners coincide with the North and South poles. Five of the other 10 corners are spaced at equal
longitudinal intervals of 72◦ (= 360◦/5) along a latitude circle at 26.565◦N, the other five along
a latitude circle at 26.565◦S.

This spherical icosahedron serves as a macrotriangulation of the sphere which allows the
application of common refinement techniques: at every step each midpoint of a triangle edge
is connected by geodesic arcs with the midpoints of the two neighbouring sides of the triangles
on both sides of it.

This construction procedure yields a grid consisting of 10 n2i + 2 grid points (nodes) and 20
n2i elementary spherical triangles, where ni = 2i is the number of equal intervals into which each
side of the original icosahedral triangles is divided. Each of these 10 n2i + 2 grid points has six
nearest neighbours with the exception of the corners of the original icosahedron, which have only
five neighbours. We therefore refer to these 12 special points as pentagonal points. Figure 1 shows
the grid for the refinement level 4.

Figure 1. Numerical grid corresponding to refinement level 4.
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The number ni is a natural parameter for specifying the resolution of the grid. The (minimum)
spacing between grid points is then the length of a side of the original icosahedral triangles (about
7054 km for the Earth) divided by ni . For example, at the refinement level i = 7, where ni = 128,
we obtain a spacing between grid points of about 55 km.

The icosahedral–hexagonal grid provides a nearly uniform coverage of the sphere even though
the hexagonal cells vary somewhat in their exact shape and size, especially those close to the
pentagonal points. The pentagons, however, are perfectly regular.

By combining the areas of pairs of the original adjacent icosahedral triangles, as shown
in Figure 2, the global grid can logically also be viewed as comprising 10 diamonds, each
of which has ni × ni unique grid points. The indexing on a diamond is based on the con-
vention that those ni × ni grid points that are unique to each diamond are numbered from 1
to ni in the rows and columns of the data arrays. The grid points on the diamonds edges,
(0, 1) to (0, ni + 1) and (0, ni + 1) to (ni , ni + 1), are shared between adjacent diamonds
and their data values must be exchanged at each time step. The polar points (0, 1) are each
shared by five diamonds: diamonds 1–5 share the North pole and diamonds 6–10 share the
South pole.

From the computational point of view the icosahedral–hexagonal grid offers the major advantage
that no indirect addressing is required. The data structure is regular and has the dimensions (0: ni ,
ni + 1, 10), that is, consists of 10 logical square arrays of points.

The indices of the neighbouring points are given by fixed offsets from the index of the home
point. These operations can be coded to obtain high efficiencies on both vector and scalar com-
puter architectures. Furthermore, the square arrays of points are readily partitioned in a domain
decomposition strategy for distributed memory parallel architectures.

Figure 2. The arranging of two adjacent icosahedral triangles in a diamond
for the refinement level 3.
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Time discretization

The two-dimensional advection equation can be written in polar coordinates on a spherical surface
of radius R as

d

dt
F(�, �) = 0 (1)

with �, � being longitude and latitude, respectively, and
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with x, y being curvilinear coordinates, defined as dx = R cos � d� and dy = R d�, and (u, v) being
wind components towards east and north, respectively, u = dx/dt = R cos � d�/dt and v = dy/dt =
R d�/dt .
Its semi-Lagrangian approximation is based on the numerical approximation of the Lagrangian

particle paths: we consider a fluid particle arriving at time tn+1 in a gridpoint P and we have to
determine its departure point P� at time tn . In order to do this, we integrate, backward in time
from tn+1 to tn , the following system of ordinary differential equations for any vertex of the grid:

d�

dt
= u

R cos �

d�

dt
= v

R

(2)

For each gridpoint Pi , with i ranging from 1 to NP , the new value of F is then defined as

Fn+1
i = Fn

i� (3)

Since, in general, the points Pi� do not belong to the numerical grid, a suitable interpolation method
has to be used.

In many models that use this semi-Lagrangian approach, the characteristic lines are approximated
with straight lines in the (�, �) plane, whose direction is determined iteratively.

In our model, in order to reconstruct more accurately the characteristic lines, we introduced a
substepping procedure [9, 10] and solve system (2) evaluating �, � in N� intermediate time steps,
where N� is to be chosen. As shown in the cited works, system (2) can be efficiently integrated,
backward in time, by a simple explicit Euler method (first-order accurate)

�(k−1) = �(k) − �
u(k)

R cos �(k)

�(k−1) = �(k) − �
v(k)

R

(4)

with �= �t/N� and k ranging from 1 to N�; (�(N�), �(N�)) refer to the generic grid point Pi and
(�(0), �(0)) to the corresponding departure point Pi� .

As a comparison, a second-order Runge–Kutta method has been considered and its accuracy
improvements evaluated with respect to the higher computational cost. In both cases, to accurately
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132 M. F. CARFORA

integrate system (2) also along near-polar trajectories, we adopt a rotated coordinate system, as
commonly suggested in the literature [20], only for situations involving strong cross-polar flows.

The proposed substepping procedure has other advantages: first of all, when the proposed
numerical scheme for semi-Lagrangian advection is used in an atmospheric circulation model
(even the simple shallow water equations, as shown in [13, 14]), very large time steps can be used
without a significant loss of accuracy. Then, the computational cost for the numerical integration
of the model can be significantly reduced.

A second advantage, that we will discuss in the next section, concerns the merging of this
substepping procedure with the described icosahedral grid: with this choice, the expensive tree-
search of the departure point of a characteristic line is no more required, which has represented, up
to now, a huge drawback for semi-Lagrangian procedures on irregular grids. Indeed, if the number
N� of substeps is chosen under a local CFL condition, the departure point is tracked back crossing
at most one cell for each substep.

Interpolation

To solve Equation (3) and also to integrate system (2) we need to evaluate variables u, v, F in
locations that are, generally, internal to the triangular cells. So we need, first, to identify the cell
which every departure point belongs to and, second, to evaluate the advected quantity at this
location by an appropriate interpolation procedure.

The more complicated step in such a semi-Lagrangian procedure on unstructured grids seems
to be the identification, for any grid point, of the triangle from which the trajectory started at the
previous time step. Indeed, many of the published works on this subject accurately describe this
search procedure, see e.g. Giraldo [6], where a tree-search algorithm is proposed.

However, this search is not a problem for the presented method. Here, the substepping procedure
does exactly the job, since at every substep (backward in time) any Lagrangian point can only
move to a neighbouring cell, due to the CFL restriction; then the algorithm easily checks in which
cell the point has moved. Finally, when the procedure completed, for any grid point (arrival point)
the cell containing the departure point of the related characteristic is already identified and all we
need is an interpolation procedure.

While in previous models, which adopted orthogonal longitude–latitude grids, cubic interpo-
lation was a consolidated strategy [8], in the more recent models based on icosahedral grids
different interpolation choices have been performed. Then, in a short study recently accepted for
publication [15] we compared the extension of several different interpolation procedures (linear,
distance based and cubic schemes) to the spherical surface. For completeness, we recall a short
definition of the interpolation schemes we consider here. The common starting point is the use of
barycentric coordinates relative to spherical triangles, as discussed in [21], where the associated
Bernstein–Bézier polynomials on the sphere are also defined

(a) We adopt, as linear interpolator for values of a function on a point P belonging to a spherical
triangle T , the linear combination of the function values on the triangle vertices weighted
by the normalized barycentric coordinates of point P .

(b) The RBF approximant s(P) at a point P with respect to the given points P1, . . . , Ph in Rk ,
is sought as [22]

s(P) =
h∑

i=1
wi�(‖P − Pi‖)
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where � is the RBF to be specified, ‖ · ‖ is the standard Euclidean norm and the weights
wi have to be computed so that the estimated function agrees with the observations at
points Pi . We consider the performance of the generalization to the sphere of the Hardy’s
multiquadrics, for �(r) = (r2+d2)1/2, with r being geodesic distance and d being a tension
parameter to be chosen: since we use as interpolation points the seven (six in the case of
pentagonal points) grid points closest to P , we fix d of the order of the typical neighbours
distance. Determination of the weights wi then requires the solution of a linear system of
size h = 7.

(c) Theoretical considerations and numerical experiments lead us to suggest the use of Lagrange-
type cubic patches for interpolation. Indeed, while the Hermite-type interpolation methods
adopted in early papers [23, 24] require gradient estimates for the triangle vertices (and so
any inaccuracy in these estimates strongly affects the interpolation results), Lagrange-type
interpolation only requires function values. Once identified in the triangulation 10 neighbours
of point P which together form a triangle T , in our proposed scheme the approximation at
P is written in Bernstein–Bézier form [21] as

p(P) = ∑
i+ j+k=3

ci jk B
3
i jk(P)

where the B3
i jk(P) are the homogeneous Bernstein basis polynomials of degree 3 on T

B3
i jk(P) = 3!

i ! j !k!b
i
1b

j
2b

k
3

and (b1, b2, b3)’s are the barycentric coordinates of P in T . The coefficients ci jk have to
be computed imposing interpolation at the 10 fixed neighbours, which requires the solution
of a linear system. As a remark, we note that the entries of the matrix of this system only
depend on the barycentric coordinates of the 10 neighbours of point P in T , that are fixed
nodes of the grid. Then, the corresponding matrix can be inverted just once and the resulting
coefficients stored.

Computational issues

We report in this section some considerations on the computational cost of the proposed scheme
in comparison to the two main trajectory calculation methods in the literature: Ritchie’s method
and McGregor’s method.

The method proposed by Ritchie [11] is iterative and interpolating. Giraldo [17] proved its
simplification to the midpoint integration rule on the surface of a sphere:

xM = xA − �t

2
u

(
xM , t + �t

2

)

where xM and xA are the midpoint and the arrival point of the trajectory, respectively. Usually,
between three and five iterations are required for this recursive scheme to converge; then, the
departure point xD of the trajectory is calculated by

xD = xA − �tu
(
xM , t + �t

2

)
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Apart from the cost of the interpolation procedure, the scheme then requires three to five evaluation
of the velocity for every grid point. The cost of the substepping method we propose here is
comparable to the one of Ritchie’s method since it requires, apart from the interpolation, one
evaluation of the velocity for every substep; the number of substeps is fixed to the smallest integer
greater than (or equal to) the local Courant number.

McGregor’s non-interpolating method [12] for trajectory calculation in semi-Lagrangian methods
was based on a Taylor series expansion of the advected field. McGregor’s method has been extended
to triangular grids by Giraldo [17], which overcomes the main difficulty in applying this method on
unstructured grids, namely the evaluation of derivatives at the grid points, introducing an element
by element construction procedure for forming these derivatives. This procedure requires, for the
evaluation of any of the first partial derivatives at a grid point, the solution of a linear system
which involves one elemental matrix of size three for any of the six neighbours of this point; for
the second derivatives 18 neighbours are involved. For higher-order derivatives, the differencing
stencil grows even further, involving 36 neighbours for the third derivatives, 60 neighbours for the
fourth derivatives, and so on.

It is evident from these considerations that the cost of the whole substepping procedure, involving
the determination of the nearest neighbours and the solution of a linear system of size 10 (for cubic
interpolation) is definitely minor than the cost of McGregor’s method already for N = 2 (second
derivatives).

NUMERICAL EXPERIMENTS

Here, we consider two numerical experiments to test our advection scheme. These experiments are
solid-body rotation of a passive scalar on the surface of the sphere and a deformation flow test for
a time-dependent vortex simulated near the poles. The scalar F used in the following advection
tests can be viewed as the surface pressure divided by gravity in a shallow water model, or as the
pressure difference divided by gravity between the top and the bottom of a model layer in a GCM,
or also as the mass per unit area of any single atmospheric component in a GCM, for example
water vapour or a chemical constituent.

Solid-body rotation

The problem of solid-body rotation in (�, �) coordinates, as in [16] Test N.1, will be first considered.
This is quite a standard test for advection schemes over the sphere. We have an initial height profile
(a cosine bell) which rotates, with constant angular velocity �, around the Earth axis (through the
poles). The initial field is given by

F(�, �) =
{
1/2[1 + cos(�r/r0)] if r<r0

0 if r�r0
(5)

where r is the geodesic distance between (�, �) and the bell centre, initially fixed at (3�/2, 0) and
the bell radius r0 is R/3; R is the Earth’s radius.

We consider this rotation in a spherical coordinate system (�, �) having its North pole at the
point P (not coinciding with the physical North pole, NP, in general).
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Then, if we indicate by �0 the angle between the physical and the numerical North pole, so
that (0, �/2−�0) are NP coordinates in the new system, the velocity components of the advecting
wind field are given by

u = u0[cos � cos �0 + cos � sin � sin �0]
v = −u0 sin � sin �0

(6)

with u0 = 2�R/(12 days).
The flow field is such that when �0 = 0, the axis of rotation is the polar axis, and when

�0 = �/2, it is in the equatorial plane. In regular longitude–latitude grids, different choices of �0
lead to different accuracy in the results, due to the varying spatial resolution of the grid cells. On
the contrary, in the geodesic grid the resolution is almost uniform, and the choice of the parameter
�0 is expected not to affect the accuracy of the approximation. However, we tested our model for
�0 = �/2− 0.05 radiants, so that the maximum of the advected field is very close to the numerical
poles.

We show results of the implementation of the proposed semi-Lagrangian advection scheme
endowed with the Euler scheme (4) for time integration: in such a test case, when the analytical
velocity field is known and independent of time, the more complicated second-order Runge–Kutta
scheme does not introduce any improvement.

Comparison of the interpolation schemes. As far as the interpolation scheme is concerned, the
proposed linear interpolator, RBF scheme and cubic Lagrange interpolator has been compared
on the considered test problem. In previous comparisons on a smoother test problem [15] RBFs
and cubic interpolation both gave good approximation results, and also the simpler linear scheme
performed fairly good; on the contrary, when applied to the present test problem, the linear scheme
fails, giving excessive smoothing of the solution and also stretching in the direction of flow. Also
the accumulation of the error in the RBF scheme is sensibly greater, while the cubic scheme
confirms to be accurate and robust: the global relative errors on the advected field in L1, L2 and
L∞ norms (indexes l1, l2, l∞ in [16]) have been calculated for the three interpolation schemes after
12 days of simulation, corresponding to a complete rotation of the cosine bell pattern, on a grid
of 10 242 points (refinement level 5) with a time step of 120min, corresponding to a maximum
Courant number C = 1.26 and reported in Table I.

Comparison of the trajectory calculation methods. As a second test, we compare the performance
of the proposed substepping method with respect to the two cited trajectories calculation methods:

Table I. Error indicators for the different interpolation
schemes after a full solid-body rotation on a level 5 grid

(10 242 points) with �t = 120′.

l1 l2 l∞
Linear 0.5358 0.3458 0.3209
RBF 0.1157 0.1062 0.1093
Cubic 0.0292 0.0207 0.0199

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:127–142
DOI: 10.1002/fld



136 M. F. CARFORA

Table II. Accuracy for the midpoint rule, McGregor’s scheme
for N = 1, . . . , 4 and the proposed scheme on Test n.1 with
levels 3 (Courant= 1.13) and 4 (Courant= 2.27), after one

revolution for �= 0.

Method l2 M1 l2 M1

Exact 0.0917 1.0071 0.0195 0.9988
Midpoint 0.1132 1.0069 0.0386 0.9988
N = 1 0.4743 1.0127 0.4684 1.0050
N = 2 0.1724 1.0064 0.1506 0.9980
N = 3 0.0918 1.0069 0.0210 0.9987
N = 4 0.0917 1.0069 0.0206 0.9987
sub 0.1058 1.0053 0.0334 1.0017

the interpolating method of Ritchie, that is equivalent, as proved in [17], to the midpoint rule
on the spherical surface, and the non-interpolating method of McGregor as adapted for spherical
geodesic grids by Giraldo [17]. We do exactly the same accuracy test of that paper: we fix the
refinement levels 3 and 4, corresponding to 642 and 2562 grid points, respectively, and consider
a complete revolution of the cosine bell pattern (12 days) with a time step of 432′. We note
that, for such grid resolutions and time step, the maximum Courant numbers are C = 1.13 and
2.27, respectively, corresponding to 2 and 3 substeps for our method. Then we report in Table II
the results obtained with exact trajectories, with the midpoint rule, with McGregor’s scheme for
N = 1, . . . , 4 (i.e. using partial derivatives of the advected field up to the order N ) and the proposed
substepping scheme. Two error indicators have been considered: the l2 normalized error on the
retrieved solution, as defined in [16], and the first moment of the conservation variable

M1 =
∑

Fj∑
Fexact
j

where the sums extend to all the 10 n2i +2 grid points.
As Table II shows, our method performs better than McGregor’s method for N = 1 and 2 and just

slightly better than the midpoint rule. However, McGregor’s method with higher-order derivatives
(N = 3 and 4) yields the best results, but at a much higher computational cost, as discussed in the
previous section.

As far as the mass conservation is concerned, even if our method is not inherently conservative,
the reported values for the indicator M1 show that all the considered methods give comparable
results.

When resolution increases, the advantages of the substepping procedure over the midpoint rule
are expected to be more evident, even if extensive comparisons have not been done.

Detailed solid-body results. In this section, the performance of the proposed method is examined
in more details. Executions were made for the four grid resolutions corresponding to refinement
levels ranging from 4 (2562 grid points) to 7 (163 842 grid points) and to spatial resolutions ranging
from about 440 to 55 km, respectively.

As reported by several authors, and extensively motivated in the error analysis study by Falcone
and Ferretti for SL schemes [25], the error is dominated by spatial terms: at realistic grid resolutions
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Table III. Accuracy of the proposed scheme with respect to increasing spatial resolution and
fixed time step �t = 120′ on Test n.1 after one revolution.

Level Nodes Courant l1 l2 l∞ M1 CPU time (′′)

4 2562 0.63 0.63532 0.43963 0.45911 1.054623 10.89
5 10 242 1.26 0.02922 0.02065 0.01993 0.999799 27.62
6 40 962 2.52 0.00711 0.00560 0.00599 1.000003 104.02
7 163 842 5.04 0.00150 0.00141 0.00170 1.000002 624.45

(levels 5–7) the results obtained with time steps of 60 and 120min are almost undistinguishable.
Then we fix the time step, for all resolutions, as �t = 120′, so that the related Courant number
increases from 0.63 to 5.04 when the refinement level raises.

Table III shows results corresponding to this implementation. The usual error indicators l1,
l2, l∞, M1 have been reported. Refinement levels and related maximum Courant numbers are
indicated, and also CPU execution times for the Fortran 90 code on a Pentium IV 3GHz personal
computer, as a partial indication of the computational cost of the whole scheme.

Figure 3 illustrates the time evolution of the l1, l2 and l∞ errors during the simulation for the
considered refinement levels.

Figure 4 shows on the left the cosine bell passing over the polar region after 72 h of simulation,
for � = �/2 − 0.05, and on the right the final solution, after 288 h of simulation. Contours of
the retrieved solution (solid line) and of the true solution (dashed line) are plotted with uniform
intervals of 100m. We outline that data were interpolated from the geodesic grid to a 64× 128
latitude–longitude grid for the visualization, so introducing some artefact in the highest contour.
However, the true and the retrieved solution are visually undistinguishable.

First, we observe that the considered scheme, as expected, is numerically very stable also for
values of the Courant number higher than one. Mass is not exactly conserved, but the relative mass
variation remains very small. It must be stressed that the highest L∞ errors are often located close
to the pentagonal points, i.e. the corners of the 10 diamonds in which the grid is computationally
divided. This suggests the need for a more accurate treatment of these points.

Deformation flow

As a second test problem, we consider a deformation flow in spherical geometry. Details of this
vortex problem can be found in [18]: the flow field, although smooth and positive definite, is
deformational and more challenging than the solid-body rotation.

Let (�′, �′) be the rotated coordinate system with the North pole at (�0, �0) with respect to
the regular spherical coordinate system (�, �). This coordinate system can be obtained by the
trigonometric relations

cos �′ cos �′ = sin �0 cos � cos(� − �0) − cos �0 sin �

sin �′ cos �′ = cos � sin(� − �0)

sin �′ = cos �0 cos � cos(� − �0) + sin �0 sin �

(7)
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Figure 3. Time evolution of the normalized l1 (solid line), l2 (dotted line) and l∞ (dashed line) errors for
the solid-body advection test for refinement levels 5 (top), 6 (middle) and 7 (bottom).
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Figure 4. Orthographic projection for solid-body rotation of a cosine-bell passing over
the north polar region of the sphere (left) and after a full solid-body rotation (right).

The exact solution is shown as dashed contours.
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Consider the rotation of the (�′, �′) system with angular velocity �′ such that

d�′

dt
= �′

d�′

dt
= 0

(8)

In this test, the angular velocity �′ varies with respect to the latitude �′

�′(�′) =

⎧⎪⎨
⎪⎩
0 if �′ = 0

Vt
�′ if �′ �= 0

where �′ = r0 cos(�
′) is the radius of the vortex, with r0 constant, and Vt is the normalized tangential

velocity of the vortex

Vt = 3
√
3

2
sech2(�′) tanh(�′)

The analytical solution at time t is

F(�′, �′, t) = 1 − tanh

(
�′

d
sin(�′ − �′t)

)

where d is the smoothness parameter for the flow field. The initial condition for the advected
scalar is given by F(�′, �′, 0).
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Figure 5. Orthographic projection for the contour lines of the initial field of the deformational problem.
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Figure 6. Orthographic projection for the contour lines of the analytical solution of the deformational
problem after three time steps.

Table IV. Error indicators for the semi-Lagrangian scheme with cubic interpolation on test
problem n.2 for T = 3 h. Time step �t = 5′.

Level Courant l1 l2 l∞ max |F − Fexact| 1 − M1 CPU time (′′)

4 0.40 3.32e−3 1.09e−2 7.29e−2 0.1120 1.06e−8 3.34
5 0.80 1.33e−3 5.60e−3 4.03e−2 0.0619 3.70e−10 12.51
6 1.60 6.97e−4 3.06e−3 2.66e−2 0.0409 1.14e−11 56.98
7 3.21 3.59e−4 1.60e−3 1.65e−2 0.0259 7.70e−12 284.63

Differentiating Equations (7), with some algebra one can obtain the expression for the velocity
components in (�, �) coordinates as

u = R�′[cos � sin �0 − sin � cos �0 cos(� − �0)]
v = R�′ cos �0 sin(� − �0)

For the present study, we have set the parameters (�0, �0) = (�+0.025,�/2.2), r0 = 3 and d = 5.
With these conditions two symmetric vortices are created, one near the North pole and the other
near the South pole. This set-up keeps the vortex centres away from the poles to avoid symmetry.

Figures 5 and 6 show a contour plot of the initial field in stereographic polar projection and the
corresponding analytical solution after three time units.

Numerical integration of the proposed semi-Lagrangian advection scheme with cubic Lagrange
interpolation has been performed with a time step of about 5’(corresponding to 32 time steps,
exactly as in [18]). The related Courant numbers and error indicators are reported in Table IV,
where the more significant indicator 1−M1 has been adopted instead of M1; moreover, the absolute
error indicator max |F − Fexact| has been introduced. As can also be seen in Figure 7, the essential
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Figure 7. Orthographic projection for the contour lines of the numerical solution of the deformational
problem after three time steps (refinement level 7).

details of the exact solution are represented quite well even if, as could be expected, the rate of
convergence of the numerical solution is poorer than the one attained in the first test case, where
the flow field was smoother.

We tried to do comparisons with the other interpolation schemes, but both linear interpolation
and radial basis functions revealed to be unfit to face this more challenging test problem: at the
highest resolutions (levels 6 and 7) these schemes broke down, showing very high L∞ errors,
obviously localized close to the vortex centre. Executions done with smaller time steps show little
improvement.

FINAL CONSIDERATIONS

A semi-Lagrangian scheme has been presented and tested for 2D transport on the sphere. This
scheme is designed on a geodesic grid which results in a quasi-uniform triangulation of the
spherical surface. This choice prevents any special treatment for the polar regions; moreover, it
perfectly fits the substepping procedure used for the reconstruction of the characteristics. The
scheme outperforms schemes based on the traditional regular longitude–latitude grid [9] and was
found to be competitive in terms of efficiency for the same resolution with other published trajectory
calculation schemes on geodesic grids.

A perspective for the future is an extension of the method to the shallow water equations;
between further developments, mainly concerning exact mass conservation, we intend to implement
a multiresolution procedure as in [26] to optimize the computational cost of the method.
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